
Software Engineering Students meet Interdisciplinary Project work
and Art

Letizia Jaccheri and Guttorm Sindre
Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
letizia@idi.ntnu.no

Abstract

Do software engineering students need inter-
disciplinary skills? Do students learn different
things from an interdisciplinary project work than
from software development projects? How can a
specific interdisciplinary project course be orga-
nized? This paper provides reflections about these
questions, based on the experience gained through
running a project-based interdisciplinary course
thrice. This course is part of the master degree
education at the NTNU, Trondheim, Norway. Stu-
dents taking the course work in teams of five, of-
ten coming from study programs of quite different
disciplines. There is no predefined project assign-
ment, instead the teacher has only described an
open-ended theme, within which different student
teams then define their own project assignment.
The paper provides some reflections and lessons
learned that can be exploited for designing simi-
lar interdisciplinary team project courses in other
universities.

1 Introduction

Software projects are by nature interdisci-
plinary, drawing on many different types of skills
and knowledge, both IT-related (e.g., project man-
agement, analysis and design, user interfaces, cod-
ing, testing, ...) and non-IT (e.g., knowledge of the
application area for the software, say, accounting,
healthcare, or the arts). The rapid technological
change means that career paths are more uncertain
for today’s software engineering students than they
were before, and that the importance of interdisci-
plinary skills is likely to be growing [12, 14]. This
can be addressed in study programmes in two dif-
ferent ways:

• making interdisciplinary study programmes

drawing on knowledge from two or more
established disciplines, e.g., bioinformatics,
computer linguistics.

• educating students that are still experts in one
discipline, but give them the skills needed to
work together with experts from other disci-
plines.

It is the second approach which is of interest to this
paper. In software engineering education, one way
to strengthen the students’ abilities to work with
people from other disciplines would be through
team projects:

• The problem to be solved by the project
team may demand knowledge from several
disciplines. In a software project, the typi-
cal combination would be IT + one or more
application-oriented disciplines, depending
on the customer for which the software is in-
tended (whether that customer is real or in-
vented).

• Even more ambitiously, the project may ne-
cessitate communication with people from
other disciplines, or even compose teams with
students from different disciplines.

Yet, while most contemporary university level soft-
ware engineering programmes include one or more
team projects, it seems that interdisciplinarity is
rarely a strongly emphasized learning goal for such
projects. Part of the reason might be that the core
software engineering skills are themselves quite a
bit to master, requiring team projects of substantial
size to be properly addressed – a too small project
assignment can easily be solved by ad hoc coding,
not needing any planned process or team collabo-
ration. Hence, adding interdisciplinary challenges
on top of an already ambitious team project may
be too much in terms of student workload and ped-
agogical risk.

1



At the NTNU, we expose our software engi-
neering students to three substantial team projects
during the course of study, two with a focus on
core software engineering skills, and the third in-
stead focussing on learning goals related to inter-
disciplinarity. This third project course is called
Experts in team (EiT), and is compulsory not only
for IT students but also from students of other pro-
grams within our university. This paper presents
and evaluates our experiences after being involved
in three subsequent offerings of this course.

The rest of the paper is structured as follows:
Section 2 shows how the EiT course complements
other team projects offered to the software en-
gineering students, and explains why it needs to
be placed late in the course of study. Section 3
describes the EiT course in general, while sec-
tion 4 goes into more detail about the particular
project instances the first author has been super-
vising. Section 5 presents research questions, re-
search method, and evaluation results, both for our
particular project instances and for the EiT course
in general. Section 6 then reviews related work and
discusses how our project is different from what is
reported by others. Section 7 concludes the paper
with some lessons learnt and indications for future
work.

2 Three complementary team projects

At the NTNU, as in most other contemporary
software engineering study programmes, the stu-
dents have several team projects to train vari-
ous aspects of the software development process.
Disregarding smaller projects within single theory
courses[13], three team projects are compulsory to
all our software engineering students:

• a software engineering project in the second
year [18], where teams of 4-5 students start
out with teacher-supplied requirements to per-
form the design (UML), coding (Java), and
testing.

• a systems development project in the fourth
year (Autumn, i.e., 7th semester) [2], where
each team of 6-7 students is assigned to a real
customer, for whom they have to do prob-
lem analysis and requirements engineering,
design and a partial implementation of the
system.

• the EiT project (4th year Spring, i.e., 8th
semester), focussing on interdisciplinarity
and self-reflection, as will be further de-
scribed below.

These three projects can be seen to complement
each other. The first focuses on late development

phases, while the second on early phases, but both
with a strong intra-disciplinary focus on core soft-
ware engineering skills. The EiT project is signifi-
cantly different in that:

• the team members are no longer all IT stu-
dents but drawn from several different study
programs

• as long as they stay within a defined theme,
the students are free to conceive their own
project assignment, whereas requirements
were given by the teacher in the first project
and elicited from the customer in the second.
Nor is any specific project process imposed
on the teams, who can define whatever mile-
stones they like.

• there are no specific demands to develop soft-
ware (although the team may do so if they
wish). This reflects the important recognition
that software is not a goal in itself: What a
potential customer wants is to have a problem
solved, or to gain useful knowledge, and if
this can be achieved better without software,
so be it.

Still, the software engineering (SE) students are
supposed to use their expertise as software engi-
neers in their EiT project. Hence, each team where
one or more members are software engineering stu-
dents need to define a project assignment for them-
selves that, if not developing software, at least lets
their SE background come into play. Similarly, the
problem should also require biological knowledge
for its solution if a Biology student were in the
team, or knowledge of art if an Art student were
in the team. Thus also the motivation for the late
placement of EiT in the course sequence: The stu-
dents should already be ”experts” in their field of
study when undertaking the EiT project, thus be-
ing challenged to see how their expertise can be
made useful in collaboration with other students
with a quite different expertise. The next two sec-
tions will explain in more detail how the course is
run.

3 EiT: the course in general

Experts in team (EiT) is a course of 7.5 ECTS
credits 1, compulsory for almost all 4th year mas-
ter students at the NTNU. Students work in inter-
disciplinary teams and are asked to define a prob-
lem description and establish a project to solve this
problem. There are four general learning goals:

1European Credit Transfer System, 60 credits per year, i.e.,
EiT will be one of four courses that a full-time student takes
during the Spring semester.

2



LG1: acquire an understanding of own compe-
tence and how it may be used for the benefit
of the team.

LG2: gain experience in teamwork as a means to
solve interdisciplinary problems.

LG3: acquire insight in own behavior and how it
influences collaboration in the team.

LG4: acquire insight in how one is influenced by
the team work.

Each group has to deliver a product report and a
process report, counting 60% and 40% towards
the grade, respectively. The product report must
present and discuss the interdisciplinary problem
solution and the scientific methods that have been
used to come to the solution. The process re-
port must describe the team process, e.g., how the
team cooperated, roles of different team members,
whether there were any significant events during
the process (e.g., conflicts, how these were solved),
and how these can be related to group process the-
ory.

At the time of writing (2006) EiT is taken by
1500 students divided in approximately 50 classes
(or villages) of 30 students each, who are com-
posed into 6 teams of 5 students. Each village
is supervised by a professor, who has described
a fairly open ended theme for that village. Each
student team may then invent their own project as-
signment, and set their own milestones, as long as
they stay within the given thematic area and end
up delivering the required reports. This openness
of the assignment is supposed to foster student cre-
ativity and a strong sense of ownership of the con-
ceived project. Moreover, the open assignments
make it easier for each team to define a project
where every member is able to contribute their own
expertise, regardless of which study program they
come from.

Nevertheless, it must be admitted that many vil-
lage themes do imply some backgrounds as essen-
tial to the village, while others may be harder to
accomodate. For instance, our village on Art and
Software could definitely be of interest to Art stu-
dents (or other closely related programmes like De-
sign or Architecture) and IT students, but it might
be harder for, say, a Medicine student to capitalize
on her expertise within such a theme. Similarly,
the village with the theme ”How to pump up more
oil from the subsea field Gullfaks?” might easily
involve a number of science and technology disci-
plines, as well as economy, but it would be hard
to come up with a project within this theme that
would be challenge the expertise of a student of
Religion, Drama or French language. Hence, stu-
dents are not assigned to villages at random, rather

each student will make a prioritized application for
5 villages where the student believes that her back-
ground will be relevant.

The project is usually run in the Spring semester
over 14 weeks. Wednesdays are reserved for vil-
lage day which means that no courses taken by
4th year students are allowed to schedule lectures
on that weekday. This is necessary for the stu-
dents from different campuses and study programs
to be able to meet conveniently. Each Wednesday,
a meeting is held in each village, this is compul-
sory for all students.

Students themselves carry the responsibility for
convening, meeting agenda, and leading the meet-
ings. At the meeting, shared problems are dis-
cussed to agree on actions to be taken. Some meet-
ings are reserved for technical or team process pre-
sentations by the students in accordance with a
milestone plan that the students have worked out
themselves at the beginning of the semester. By
working in EiT where each team member initially
has different perspectives on the problem at hand,
the students will develop attitudes and interdisci-
plinary teamwork. In solving a problem that chal-
lenges their area of expertise, they will be trained
in using their subject skill to contribute to the mu-
tual problem solving process. Through this pro-
cess the students will be exposed to the challenge
in interdisciplinary communication, learn to oper-
ate within an interdisciplinary environment, learn
to understand the interaction between each mem-
ber of the team, and learn how this interaction af-
fects them.

The teacher encourages the students to orga-
nize their reported results according to the learn-
ing goals. LG1 (about own competence) and
LG2 (ability to solve interdisciplinary problems)
are usually discussed as part of the product report
while LG3 (insight in own behavior) and LG4 (in-
sight in team dynamics) as part of the process re-
port. Different groups are free to address the learn-
ing goals in their own preferred ways, but there ex-
ist some tests that the facilitator team offers to stu-
dents who want help to reflect over LG3 and LG4.

In the next section, we look at one such village
in more detail, with a theme circling around Art
and Software. A more general description of the
pedagogical framework of the course can be found
in [19, 20], while [15] gives an account of another
EiT village, whose theme circled around various
applications of microelectronics.

4 EiT: The Art and Software village

As all other villages, the Art and Software vil-
lage has to comply with the general framework

3



of the EiT course. Hence, each student team is
encouraged to identify their own problem within
the scope of the village theme – and such that the
expertise of each team member is relevant to the
problem. Also each team will define their own
goals and project plan (with or without milestones
on the way), and the final product and process re-
ports will count 60/40 towards the course grade.
The village has been run three times, with slightly
changing theme titles:

• in 2004 the name was Art and IT, and the vil-
lage attracted 9 CS/SE students and 16 stu-
dents from other study programmes. From
this 6 teams were composed, each with 1-2
CS/SE students.

• in 2005 the name was Art and Technology,
and the village attracted 5 CS/SE students and
19 students from other programmes. From
this 5 teams were composed, each with 1
CS/SE student.

• in 2006 the name was Art and Software.
The village now attracted 13 CS/SE students
but only 3 students from other programmes.
While the 2004 and 2005 villages were taught
in Norwegian, the 2006 village was taught in
English.

A first observation to be drawn from this, is that the
choice of theme and title for the village might seem
to have a strong impact on the students’ choices.
Art and Technology may have felt too broad for
CS/SE students, who then sought other villages in-
stead. On the other hand, the more specific Art and
Software brought the number of CS/SE students to
an all time high, but the number of other students
was very low. Still, it should be noted that the name
alone is probably not the entire reason for this fluc-
tuation in popularity. Students are allocated to the
various villages by the central EiT staff, based on
a bidding process where each student submits a
prioritized list of village preferences. Thus, the
number of students per village will also depend
on the type and total number of villages offered.
One notable point here is that EiT was initially
strongly dominated by the technology study pro-
grammes, but from 2004 to 2006 there has been a
gradual increase in villages offered from Arts and
Humanities teachers, causing a stronger competi-
tion for students who might have been particularly
interested in the Art aspects of the village. More-
over, the switch from Norwegian to English as the
teaching language of the village (meaning that re-
ports also had to be written in English) may have
scared away many Arts and Humanities students,
for whom the readings may have been mainly in

Norwegian in their previous courses, while CS/SE
students are accustomed to course literature in En-
glish from their freshman year. Anyway, the 2006
student composition for the village reveals that the
allocation procedure of the central course staff did
not function according to the intention, as this time
around the CS/SE students mainly had to collabo-
rate with other students of their own discipline.

In the following, we will look at the three sub-
sequent project experiences in more detail.

4.1 The 2004 village: Art and IT

This year, most of the groups (5 out of 6) chose
to work for an external customer. Three groups de-
veloped software for the project LIVE LIFE, sug-
gested by the Norwegian artist Espen Gangvik.
The idea of the artist is to develop an animated
picture that changes over time. The picture does
not interact with its environment. The life cycle of
the picture could be as long as one wishes. Theo-
retically the observer should be able to follow the
evolution of the picture during his/her whole life.
The three teams produced three different systems
according to the initial specification and the coop-
eration with the artist. Two other groups worked
with the artist Kristin Bergaust, one with tracing
for artistic purposes, and one developing an inter-
active art installation. Only one group chose not
to work with a customer, thus defining a project
idea totally on their own. This group wrote a re-
port about a 3D engine for art. This group was,
incidentally, the only one not to develop any code
in their project, their report only dealing with the
analysis and design stage.

4.2 The 2005 village: Art and Tech-
nology

In 2005, none of the teams had specific cus-
tomers. This was not due to any dissatisfaction
with the customers of the previous year, but more a
coincidence. It is not up to the teacher but to each
respective team to decide whether they will work
for a customer or not, although the teacher could
provide advice on the pros and cons of each alter-
native, as well as obtain contacts with artists will-
ing to be customers. One group made a futuristic
collection of pictures and sounds, another a flash
animation parodying three well-known TV real-
ity series. Two groups worked on tools, one sup-
porting photo manipulation for artistic purposes,
the other (report ending with a design, no code)
a framework for photography teaching in schools.
Finally, one group delivered a more essay-oriented
product report, discussing parallels between art

4



and technology. Hence, three of the five groups
developed code.

4.3 The 2006 village: Art and Soft-
ware

In 2006, one group worked for a customer, the
artist Oyvind Brandsegg. They developed a soft-
ware component for a music installation which
takes care of the transmission of music between the
server, the physical installation, and the WEB in-
terface of the system (http://www.flyndresang.no/).
The other groups developed an interactive instal-
lation and a software tool (Artware), respectively.
Artware supports WEB based community build-
ing based on sharing and development of pictures.
This year, all the teams developed code in their
projects, which is perhaps not surprising given the
huge overweight of CS/SE students in the 2006 vil-
lage.

5 Evaluation and discussion

5.1 Research Method

The main research method used in the evalua-
tion and gradual improvement of the EiT village
about Art and IT/Technology/Software has been
that of action research [21], which is a quite pop-
ular research method in the field of education [8].
With such an approach, the research goes through
cycles of four stages:

• plan the project course

• act, i.e., run the project as facilitating teacher

• observe, e.g., what the students do in their
projects, how the project teams function, to
what extent they are satisfied, and to what ex-
tent the learning goals of the course seem to
be reached.

• reflect upon the teaching practice and course
structure, i.e., which features of the project
led to success or failure for the various teams’
course satisfaction and learning outcomes?
The result of this reflection should be ideas
for improvement, which are subsequently in-
put to the next cycle, i.e., the planning stage
for next year’s project.

So far, this cycle has been run three times for the
project village under discussion. The main sources
of observation have been the following:

• direct observation of the students during their
teamwork

• oral and email consultations with the students

• input from teaching assistants

• reading the product and process reports of the
teams, as well as observing any products be-
side the reports (e.g., art pieces, software de-
mos)

• student feedback on questionnaires specifi-
cally related to the particular village

Additionally, the staff centrally responsible for the
EiT course for the entire university evaluates the
course through a more general questionnaire dis-
tributed to all the 1500 students taking the course.
But this survey only yields gross averages for a
huge number of students (of which only about 2
percent belong to our particular project village), so
it is hard to draw concrete guidance for improving
the particular village from these data.

A particular challenge for the reflection and
gradual improvement of the project village is that
the teacher is not free to make changes to the
project structure, as this must always be in compli-
ance with what is decided by the central EiT staff.
So, for instance, the teacher would not be allowed
to change the 60/40 weighting between the product
and process report, or to deviate from the centrally
formulated learning goals for the course.

5.2 Research questions

These three years of experience has given input
to address several research questions:

• questions concerning the general framework
of EiT, which is beyond the control of the in-
dividual village teacher / facilitator, such as:

– RQ1: does the EiT course function as
intended? I.e., are the learning goals
reached, and is it a satisfactory learning
experience for the students?

– RQ2: do the students learn differ-
ent things from the EiT project than
from their earlier software development
projects, i.e., is EiT a useful supplement
for the software students rather than just
more of the same stuff?

– RQ3: how should the overall framework
of the course be changed to improve the
course further?

– RQ4: what is the ideal composition of
student teams, with respect to the num-
ber of different disciplines involved?

• questions concerning the role as facilitator,
such as:

5



– RQ5: what are the advantages and dis-
advantages of a generic vs. specific vil-
lage theme description? How could the
theme description be improved for fu-
ture villages to attract more students?

– RQ6: how is facilitation in an open-
ended project like this different from
teaching a stricter software development
project course? What are the advantages
and disadvantages of various styles of
facilitation? (e.g., being active in pro-
viding advice, or being more laid-back,
waiting until the students run into trou-
ble and actively seek advice). How
could the practice of facilitation be im-
proved for future villages?

– RQ7: what are the advantages and dis-
advantages for teams working with cus-
tomers vs. those who do not? If working
with a customer, to what extent should
the facilitator instruct the customer to
ensure an optimal learning experience
for the students?

In the following, these research questions will be
addressed based on various findings and experi-
ences from the offerings of the village so far.

5.3 Reflection

We use our research questions as a tool to struc-
ture our reflections about the course:

• RQ1: in order to evaluate if the EiT course
function as intended, one should run system-
atic validation of the learning level achieved
by students with respect to the learning goals.

Learning goals function well to stimulate oral
dialog with students. This is reflected in the
process documents written by the students
which often refer to these discussions. Learn-
ing goals guide students in their learning pro-
cess and this is reflected in the process and
product reports. The distinction between pro-
cess and product is fundamental to make stu-
dents aware of the existence and importance
of the learning and inter personal process. On
the other hand, the EiT learning goals are dif-
ficult to be converted into measurable proper-
ties.

Almost all groups state in their process re-
port that if they could start once again they
would use more time at the beginning to know
each other and to establish themselves as a
team. Some groups complain that there is not
enough interaction at village level and that the

teacher should devote more energy to let stu-
dents know each other at village level.

• RQ2: EiT differs from other courses and
project courses as in EiT the goal for the stu-
dents is not to acquire new knowledge but to
get insight in own knowledge and to apply it
to new contexts. From discussions with stu-
dents, from our observations of students dis-
cussing with each other and with students as-
sistants, we acknowledge that students strive
and progress toward elicitation and recogni-
tion of their own competence. Again, it is
difficult to quantify this notion of maturation
with respect of insight in ones own knowl-
edge. By reading the documents that stu-
dents have produced, we can use the refer-
ences to specific literature as a measure of
competence.

• RQ3: it is important that EiT evolves to re-
flect the lessons learnt in the different vil-
lages. First of all, it is important that cus-
tomers, teachers, and students be able to pro-
vide feedbacks in a way that the course evalu-
ation is formal and well understood by every-
body and that this evaluation can function as
an improvement tool. A challenge here is that
as EiT becomes bigger and bigger (the num-
ber of students and village professors increase
each year) and wider and wider (more study
programmes join EiT each year) it becomes
more bureaucratic and there is less opportu-
nity for the single teacher to influence the gen-
eral framework.

• RQ4: based on the experience in the art
and software village, we claim that the ideal
multidisciplinary team must be composed by
a combination of computer science students
and art and music students. In addition it is
beneficial to have students who are neither CS
nor art or music ones who can function as in-
spiring actors in the projects.

On the other hand, the composition of student
teams is implemented by the central admin-
istration of EiT and it based on the 5 prefer-
ences that students give to villages. Teach-
ers do not have any influence on this process.
While the process of allocating 1500 students
to 50 villages need some central management,
we claim that teachers should be involved in
this process. This claim is based on our expe-
rience, based on discussions with students and
on the comparison between students’ knowl-
edge and village theme. It is not feasible that
one single administrative person gets enough

6



insight on 50 village themes to judge if a con-
figuration of students can or cannot be allo-
cated to it.

• RQ5: a good interdisciplinary theme is im-
portant to recruit students with different back-
grounds.

To our knowledge there are no well defined
criteria to judge the degree of interdisciplinar-
ity of a theme. The quality of a village theme
depends on the skills of the teacher who de-
fines it as well as on the background of the
students that will be allocated to the village.

We claim that the theme art and software is of
interdisciplinary nature and it is attractive for
students from computer science and software
engineering, media science, history of art, and
design. This claim is grounded in the experi-
ence of 2004 and 2005 in which our village
was one of the fifty villages with most hetero-
geneous students. We have changed the theme
from IT to technology and then to software.

As observed by [1] liberal arts topics (”open-
ended topics”) in which analysis, discussion
and interpretation are core competencies and
programming issues (”closed, absolute top-
ics”) represent the dimensions of freedom and
constraints and renders the theme both inter-
disciplinary and attractive to students.

Our experience with running the village thrice
tells us that both a set of questions (e.g. ”How
did software change art in the past and how
will it be in the future?”) and a set of ref-
erences to resources (e.g., reference to the
Trondheim Electronic Art Center) are a good
tool to structure a village theme around.

• RQ6: facilitation in an open-ended project re-
quires different capabilities than class room
teaching. While the communication in tradi-
tional class room settings is mainly mono di-
rectional from teacher to students, facilitation
requires that the teacher becomes a listener.
The teacher-as-facilitator must let the students
pose their own questions and seek their own
answers rather than providing answers or even
hinting what are the most important questions
to ask. Facilitation poses different psycholog-
ical challenges to the teacher. While class-
room teaching requires the teacher to remem-
ber and be able to explain concepts and theo-
ries, facilitation requires the teacher to be able
to understand what students discuss and inter-
vene when it is strictly necessary.

The facilitator must be able to decide from
time to time if being active in providing ad-

vice, or being more laid-back, waiting until
the students run into trouble and actively seek
advice. Practices of facilitation can be im-
proved for future villages by letting teachers
exchange experience between each other.

• RQ7: customers are valuable to have in the
village, but on the other hand they may pose
requirements that bereave the students of the
responsibility of creating their own project.
This is especially true if the customers want
to exploit students for short-term goals, e.g.,
using the students mainly as an implementa-
tion resource. In the 2004 iteration an artist
dominated the village and made the products
become quite interesting (one was displayed
at an art exhibition in town). Another poten-
tial problem with customers are that they are
very busy. In the specific case of our villages,
customers are artists who love their ideas and
who do not have time to grasp the complexity
of the EiT framework.

6 Related work

As mentioned in the introduction, most software
engineering programs offer team project courses
of some kind, as recommended by [5]. Quite a
number of experience papers have been published
about such courses, as well as more general pa-
pers containing recommendations for how to teach
projects. For example, [24] describes a framework
for teaching software project courses. [6] describes
an approach to teaching in a simulated industrial
environment. The topic of educating software en-
gineers from an industry point of view is addressed
in [9]. Most software engineering projects have
only a limited focus on interdisciplinarity. [25]
presents a project course where teams were com-
posed of students from two different universities,
one in Finland and one in Russia, the work partly
being done by remote collaboration. Since the pro-
files of the two study programs were quite differ-
ent, the Finnish students were stronger in software
engineering, while the Russians were stronger in
Maths. Yet, all the students belonged to their
respective CS departments, so the challenge was
more one of multicultural teams collaborating re-
motely than of bridging a disciplinary gap. [7]
presents a course curriculum that integrates com-
puter game engineering with software engineering
in a project-based learning environment. [22] is
about a course implemented by interdisciplinary
student projects in the area of computer and video
games. However, the discipline gap between com-
puter game engineering and software engineering
is limited.

7



[4] discusses a project couse more similar to
ours, teaming together students from several study
programs. To teach students about simultane-
ous engineering, each team included students from
three different programs: electrical engineering,
manufacturing, and industrial technology. The
project assignments appear to be defined in more
detail by the teaching staff than what is the case
for our loosely defined themes. Accordingly, their
projects also had a stronger focus on the deliv-
ered product, and somewhat less focus on an ex-
plicit discussion of the process and how it was
affected by the team’s interdisciplinarity. Also,
their course did not involve software students, but
there was some low-level programming (e.g., of
microcontrollers, actuators etc.). [16] describes
a project course teaming together majors in com-
puter science and computer engineering. A project
with somewhat more disparate disciplines is re-
ported by [3], describing an e-commerce project
with teams involving CS students and business stu-
dents. Similarly, [11] presents a course combin-
ing students from Master programs in Audio/Video
Production, Computer Graphics, Technical Com-
munication, and Web Design. In all these cases,
knowing exactly which study programs the stu-
dents will come from makes it possible to define
assignments that fit this mix perfectly, with a pre-
meditated work-division between the various types
of students. In EiT, on the other hand, the as-
signment must be more loosely defined because, in
principle, students from any 5 study programs may
end up in a team together.

There are also some relevant publications focus-
ing on the combination of software and art in par-
ticular. [23] discusses the role of programmers in
interactive art projects, and what must be done to
ensure a constructive rather than obstructive con-
tribution from the programmer. But the focus of
that paper is not on education, rather on work-
place programmers assisting artists. [26] describes
a course which has some similarities to ours: it
teams together art students and IT students, and
it has a strong focus on teaching interdisciplinary
collaboration skills. But the teaching took place
in the context of a course in VR art, which in-
cluded ordinary lectures and readings, in addition
to several assignments during the term. Hence,
the assignments were more more set than in our
case, where the one open-ended team project is
the course. Similarly, [10] presents a team project
course where CS students and art students work to-
gether, again this took place in a specifically de-
signed course which also involved lectures, partly
by a CS teacher and partly by an Art teacher. And
again, there are several assignments in the course,
not just one. Still the main team project lasted for

12 weeks, and was fairly loosely described (each
team is to make an animation). Yet, this means that
the wanted product is more defined in this course
than in EiT.

Issues related to liberal arts students and com-
puter science education are more generally dis-
cussed in [1]. Here, liberal arts topics are regarded
as ”open-ended” in which analysis, discussion and
interpretation are core competencies while pro-
gramming issues as ”closed and absolute”.

[17] reports about a case study in which the
cooperative knowledge acquisition process is sup-
ported and made explicit by use of learning tech-
nology. Here, the authors recognize the importance
of the the social process and interaction with teach-
ers and peers as a means to reach a higher degree of
understanding. [14] discusses discourse as a tool
for enhancing multidisciplinary skills. However,
these publications do not address project courses.

7 Conclusions

This paper has reported on a course called Ex-
perts in Teams (EiT), which is really a course
framework where a number of different professors
(playing roles as ’village chiefs’) describe open-
ended themes within which student teams then de-
fine their own project assignments. Teams are
composed of 4th year students from different study
programmes, and with the goal that each student
should be able to use his/her competence actively
in the solution to the team’s chosen problem. The
course also has strong focus on self-reflection both
for teams and individuals. This paper has taken
an action research perspective, based on experi-
ences with one particular EiT village that has now
been run for 3 years, with a theme where art meets
software technology. Main findings are that such
an interdisciplinary course gives software students
learning outcomes that are quite different from
what they get from more traditional software en-
gineering team projects, in particular concerning
interdisciplinary skills and self insight. Also, the
fact that there is no given project assignment, only
a vaguely formulated theme, poses a stronger chal-
lenge towards student creativity, and most students
have been very satisfied with the discussed village.
Yet, findings also indicate that there is a danger of
the EiT course as a whole becoming too bureau-
cratic, and that the requirement to abide by cen-
trally defined learning goals and course structures
makes it difficult for the individual teachers to use
the experiences gained to improve the students’
learning experience from one year to the next.

As further work it could be interesting to es-
tablish more performance-oriented tests (e.g., an

8



experimental pretest-posttest design) whether the
learning goals of the course are really met, al-
though this is a considerable challenge since the
learning goals are so vaguely formulated that their
achievement is hard to measure. It might also be
interesting to scale up the project course to a multi-
university context as that addressed in [6]. In some
cases this could make it easier to ensure enough
interdisciplinarity among students in every project,
for instance if our university, which has a surplus
of technology students, could team up with another
university with a different student composition.

References

[1] Peter Bøgh Andersen, Jens Bennedsen, Stef-
fen Brandorff, Michael E. Caspersen, and
Jesper Mosegaard. Teaching Programming
to Liberal Arts Students: a Narrative Media
Approach. In ITiCSE ’03: Proceedings of
the 8th Annual Conference on Innovation and
Technology in Computer Science Education,
pages 109–113, New York, NY, USA, 2003.
ACM Press.

[2] Rudolf Andersen, Reidar Conradi, John
Krogstie, Guttorm Sindre, and Arne
Sølvberg. Project Courses at the NTH: 20
years of Experience. In J. L. Diaz-Herrera
(ed.): 7th Conference on Software Engineer-
ing Education (CSEE’7), pages 177–188,
San Antonio, USA, January 1994. Springer
Verlag LNCS 750.

[3] Karen Anewalt. Utilizing interdisciplinary
teams in teaching e-commerce. Journal of
Computing Sciences in Colleges, 19(2):288–
296, 2003.

[4] Abul K. M. Azad, Andrew Otieno, and Radha
Balmularikrishna. Interdisciplinary Student
Projects toward Simultaneous Engineering:
Learning and Issues brought forward. In
Proc. American Society for Engineering Ed-
ucation, 2003 IL/IN Sectional Conference,
Valparaiso, IN, USA, April 2003.

[5] D. Bagert, T. Hilburn, G. Hislop, M. Lutz,
M. McCracken, and S. Mengel. Guidelines
for Software Engineering Education, 1999.

[6] Lisa J. Burnell, John W. Priest, and John R.
Durrett. Teaching Distributed Multidisci-
plinary Software Development. IEEE Softw.,
19(5):86–93, 2002.

[7] Kajal Claypool and Mark Claypool. Teaching
Software Engineering through Game Design.

In ITiCSE ’05: Proceedings of the 10th an-
nual SIGCSE conference on Innovation and
Technology in Computer Science Education,
pages 123–127, New York, NY, USA, 2005.
ACM Press.

[8] Louis Cohen, Lawrence Manion, and Keith
Morrison. Research Methods in Education.
RoutledgeFalmer, New York, 2000.

[9] Richard Conn. Developing Software Engi-
neers at the C-130J Software Factory. IEEE
Softw., 19(5):25–29, 2002.

[10] D. Ebert and D. Bailey. A Collaborative
and Interdisciplinary Computer Animation
Course. Computer Graphics, 34(3):22–26,
August 2000.

[11] Pamela S. Ecker, Jason Caudill, David Hoc-
tor, and Colleen Meyer. Implementing an
Interdisciplinary Capstone Course for Asso-
ciate Degree Information Technology Pro-
grams. In Proc 5th conference on Informa-
tion technology education, pages 60–65, Salt
Lake City, UT, USA, 2004. ACM Press.

[12] Atila Ertas, Timothy Maxwell, Vicky P.
Rainey, and Murat M. Tanik. Transformation
of Higher Education: The Transdisciplinary
Approach in Engineering. IEEE Transactions
on Education, 46(2):289–295, May 2003.

[13] M. Letizia Jaccheri. Software quality and
software process improvement course based
on interaction with the local software indus-
try. Computer Applications in Engineering
Education, 9(4):265–272, 2001.

[14] Y. Julliard and A.W. Schwab. The Role of
Discourses in Multidisciplinarity. In Proc.
International Symposium on Technology and
Society (ISTAS’01), page 0007, Stamford,
CT, USA, July 2001. IEEE.

[15] Bjørn Larsen. Experts in team, interdisci-
plinary project. In Proc. 2005 IEEE Inter-
national Conference on Microelectronic Sys-
tems Education (MSE’05), Anaheim, CA,
USA, June 2005.

[16] S. Mosiman and C. Hiemcke. Interdisci-
plinary capstone group project: Designing
autonomous race vehicles. In Proc. 31st
SIGCSE technical symposium on Computer
Science Education (SIGCSE’00), Austin, TX,
USA, March 2000.

[17] Ekaterina Prasolova-Forland and Monica
Divitini. Supporting collaborative construc-
tion of knowledge: Lessons learned. In V.

9



Uskov (ed.): Proc. 8th IASTED International
Conference on Computers and Advanced
Technology in Education, CATE 2005, pages
147–152, 2005.

[18] Guttorm Sindre, Tor Stålhane, Gunnar
Brataas, and Reidar Conradi. The cross-
course software engineering project at the
NTNU: 4 years of experience. In Proc.
16th International Conference in Soft-
ware Engineering Education and Training
(CSEET’03), Madrid, Spain, March 2003.

[19] Bjørn Sortland. Experts-in-team - multi-
disciplinary project. In Proc UNIQUAL,
2nd International Conference on Universi-
ties’ Quality Development, Kaunas, Lithua-
nia, October 2004.

[20] Bjørn Sortland. Interdisciplinary Team-
Work: Preparing Students for Work-Life. In
Proc. SEFI 2005, Ankara, Turkey, September
2005.

[21] Ernest T. Stringer. Action Research. SAGE
Publications, Thousand Oaks, CA, 1999.

[22] Elizabeth Sweedyk and Robert M. Keller.
Fun and Games: a new Software Engineer-
ing Course. In ITiCSE ’05: Proceedings of
the 10th annual SIGCSE Conference on Inno-
vation and Technology in Computer Science
Education, pages 138–142, New York, NY,
USA, 2005. ACM Press.

[23] Greg Turner, Ernest Edmonds, and Alastair
Weakley. Seeing Eye-to-Eye: Supportive
Transdisciplinary Environments for Interac-
tive Art. In Proc 9th International Con-
ference on Information Visualization (IV’05),
pages 912–919, London, UK, July 2005.
IEEE Press.

[24] David A. Umphress, T. Dean Hendrix, and
James H. Cross II. Software Process in the
Classroom: The Capstone Project Experi-
ence. IEEE Software, 19(5):78–85, 2002.

[25] A. Inkeri Verkamo, Juha Taina, Turjo Tuo-
hiniemi, Yury Bogoyavlenskiy, and Dimitry
Korzun. Distributed Cross-Cultural Student
Software Project: A Case Study. In CSEET
’05: Proceedings of the 18th Conference
on Software Engineering Education & Train-
ing, pages 207–214, Washington, DC, USA,
2005. IEEE Computer Society.

[26] Guy W. Zimmerman and Dena E. Eber. When
Worlds Collide! An Interdisciplinary Course
in Virtual-Reality Art. In Proc. 32nd SIGCSE

technical symposium on Computer Science
Education (SIGCSE’01), pages 75–79, Char-
lotte, NC, USA, 2001. ACM Press.

10


